服务压测,发现过“TIME_WAIT”这个发现怪异现象吗?

服务压测,发现过“TIME_WAIT”这个发现怪异现象吗?

最近有同事在用 ab 进行服务压测,到 QPS 瓶颈后怀疑是起压机的问题,来跟我借测试机,于是我就趁机分析了一波起压机可能成为压测瓶颈的可能,除了网络 I/O、机器性能外,还考虑到了网络协议的问题。

当然本文的主角并不是压测,后来分析证明同事果然还是想多了,瓶颈是在服务端。

分析起压机瓶颈的过程中,对于 TCP TIME_WAIT 状态的一个猜想引起了我的兴趣。由于之前排查问题时,简单地接触过这个状态,但并未深入了解,于是决定抽时间分析一下,拆解一下我的猜想。

TCP 的状态转换

我们都知道 TCP 的三次握手,四次挥手,说来简单,但在不稳定的物理网络中,每一个动作都有可能失败,为了保证数据被有效传输,TCP 的具体实现中也加入了很多对这些异常状况的处理。

状态分析

先用一张图来回想一下 TCP 的状态转换。​

一眼看上去,这么多种状态,各个方向的连线,让人感觉有点懵。但细细分析下来,还是有理可循的。

首先,整个图可以被划分为三个部分,即上半部分建连过程,左下部分主动关闭连接过程和右下部分被动关闭连接过程。

再来看各个部分:建连过程就是我们熟悉的三次握手,只是这张图上多了一个服务端会存在的 LISTEN 状态;而主动关闭连接和被动关闭连接,都是四次挥手的过程。

查看连接状态

在 Linux 上,我们常用 netstat 来查看网络连接的状态。当然我们还可以使用更快捷高效的 ss (Socket Statistics) 来替代 netstat。

这两个工具都会列出此时机器上的 socket 连接的状态,通过简单的统计就可以分析出此时服务器的网络状态。

TIME_WAIT

定义

我们从上面的图中可以看出来,当 TCP 连接主动关闭时,都会经过 TIME_WAIT 状态。而且我们在机器上 curl 一个 url 创建一个 TCP 连接后,使用 ss 等工具可以在一定时长内持续观察到这个连续处于 TIME_WAIT 状态。

所以TIME_WAIT 是这么一种状态:TCP 四次握手结束后,连接双方都不再交换消息,但主动关闭的一方保持这个连接在一段时间内不可用。

那么,保持这么一个状态有什么用呢?

原因

上文中提到过,对于复杂的网络状态,TCP 的实现提出了多种应对措施,TIME_WAIT 状态的提出就是为了应对其中一种异常状况。

为了理解 TIME_WAIT 状态的必要性,我们先来假设没有这么一种状态会导致的问题。暂以 A、B 来代指 TCP 连接的两端,A 为主动关闭的一端。

  • 四次挥手中,A 发 FIN, B 响应 ACK,B 再发 FIN,A 响应 ACK 实现连接的关闭。而如果 A 响应的 ACK 包丢失,B 会以为 A 没有收到自己的关闭请求,然后会重试向 A 再发 FIN 包。如果没有 TIME_WAIT 状态,A 不再保存这个连接的信息,收到一个不存在的连接的包,A 会响应 RST 包,导致 B 端异常响应。此时, TIME_WAIT 是为了保证全双工的 TCP 连接正常终止。
  • 我们还知道,TCP 下的 IP 层协议是无法保证包传输的先后顺序的。如果双方挥手之后,一个网络四元组(src/dst ip/port)被回收,而此时网络中还有一个迟到的数据包没有被 B 接收,A 应用程序又立刻使用了同样的四元组再创建了一个新的连接后,这个迟到的数据包才到达 B,那么这个数据包就会让 B 以为是 A 刚发过来的。此时, TIME_WAIT 的存在是为了保证网络中迷失的数据包正常过期。

由以上两个原因,TIME_WAIT 状态的存在是非常有意义的。

时长的确定

由原因来推实现,TIME_WAIT 状态的保持时长也就可以理解了。确定 TIME_WAIT 的时长主要考虑上文的第二种情况,保证关闭连接后这个连接在网络中的所有数据包都过期。

说到过期时间,不得不提另一个概念: 最大分段寿命(MSL, Maximum Segment Lifetime),它表示一个 TCP 分段可以存在于互联网系统中的最大时间,由 TCP 的实现,超出这个寿命的分片都会被丢弃。

TIME_WAIT 状态由主动关闭的 A 来保持,那么我们来考虑对于 A 来说,可能接到上一个连接的数据包的最大时长:A 刚发出的数据包,能保持 MSL 时长的寿命,它到了 B 端后,B 端由于关闭连接了,会响应 RST 包,这个 RST 包最长也会在 MSL 时长后到达 A,那么 A 端只要保持 TIME_WAIT 到达 2MS 就能保证网络中这个连接的包都会消失。

MSL 的时长被 RFC 定义为 2分钟,但在不同的 unix 实现上,这个值不并确定,我们常用的 centOS 上,它被定义为 30s,我们可以通过 /proc/sys/net/ipv4/tcp_fin_timeout 这个文件查看和修改这个值。

ab 的”奇怪”表现

猜想

由上文,我们知道由于 TIME_WAIT 的存在,每个连接被主动关闭后,这个连接就要保留 2MSL(60s) 时长,一个网络四元组也要被冻结 60s。而我们机器默认可被分配的端口号约有 30000 个(可通过 /proc/sys/net/ipv4/ip_local_port_range 文件查看)。

那么如果我们使用 curl 对服务器请求时,作为客户端,都要使用本机的一个端口号,所有的端口号分配到 60s 内,每秒就要控制在 500 QPS,再多了,系统就无法再分配端口号了。

可是在使用 ab 进行压测时时,以每秒 4000 的 QPS 运行几分钟,起压机照样正常工作,使用 ss 查看连接详情时,发现一个 TIME_WAIT 状态的连接都没有。

分析

一开始我以为是 ab 使用了连接复用等技术,仔细查看了 ss 的输出发现本地端口号一直在变,到底是怎么回事呢?

于是,我在一台测试机启动了一个简单的服务,端口号 8090,然后在另一台机器上起压,并同时用 tcpdump 抓包。

结果发现,第一个 FIN 包都是由服务器发送的,即 ab 不会主动关闭连接。

登上服务器一看,果然,有大量的 TIME_WAIT 状态的连接。

但是由于服务器监听的端口会复用,这些 TIME_WAIT 状态的连接并不会对服务器造成太大影响,只是会占用一些系统资源。

小结

当然,高并发情况下,太多的 TIME_WAIT 也会给服务器造成很大的压力,毕竟维护这么多 socket 也是要消耗资源的。


北京云中融信网络科技有限公司(简称融云),是安全、可靠的全球互联网通信云服务商,向开发者和企业提供即时通讯和实时音视频通信云服务。iResearch 艾瑞权威数据报告显示,融云即时通讯云市场份额连续多年稳居头位。

融云构建了一张覆盖全球所有国家及地区(共 233 个)的通信云网络,在全球各地设立多个数据中心及数千个加速节点。基于客户业务需求,融云可提供多种部署模式——公有云、私有云、混合云,为全球企业提供稳定的互联网通信云服务。针对企业级用户,融云将业务垂直到各个行业,为社交、直播、金融、交通运输、教育、电商、医疗等多个行业领域推出了针对性解决方案。

融云基于海量业务的技术锤炼,从基础架构到精细化运营,充分体现平台实力;凭借卓越的产品和优质的服务,在开发者规模、行业覆盖率、平台日活跃用户数、日均消息量等方面超越全行业。目前,已有数十万互联网用户及上千家企业级用户通过融云实现了场景化沟通,并从中获益,包括工商银行、中国移动、四川航空、CCTV 微视、中联重科、58 赶集、大河报业、新东方、陆金所、融创地产、IDG、华兴资本、易车网、猪八戒、得到 APP、荔枝、汽车之家、哈啰出行、百姓网、StarMaker、Opera、Elelive。

       

标签: